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The diffusion problem of a magentic field pulse in a conductor was formulated and in- 
vestigated by many authors [1-3]. As to the electric conductivity of the medium, one usually 
assumes satisfaction of one of the three hypotheses: i) o = o0 = const, 2) o = I/AQ$, $ = 
const, A = const (Q is the increase in internal energy with respect to the initial state), 3) 
o = o0/(i + ~Q). The thermal conductivity of the medium was taken to be constant in these 
studies. Hypothesis 2 was treated in [2, 4], and a problem with o dependence of shape 3 - 
in [3]. A constant conductivity was investigated in [I, 5]. The complexity of the problem 
in the case of hypotheses 2, 3 is dictated by the nonlinear dependence of conduction of the 
conductor on its thermodynamic characteristics. Even in the case of constant o, however, in- 
vestigators have resorted to further simplifications of the model. For example, the thermal 
conductivity of the medium is not taken into account in [i], and in [5] the boundary regime 
is treated only in the form of a magnetic field discontinuity. An analytic solution of the 
linear problem is given in the present paper with account of the thermal conductivity and 
with a graduated boundary regime of the magnetic field, and the nonlinear problem is investi- 
gated for hypothesis 2, as well as the structure of the solution for hypothesis 3. 

i. As is well known [i, 211, the penetration of a magnetic field into an incompressible 
conductor of planar or cylindrical geometry is described by the system of equations 

o~I OE , o s  %E OQ /2 Oq OQ ( 1 . 1 )  
Ox 7' - d - ; * ~ N - -  x ' ] = o ( Q ) E ,  ot ~ o~'  q = - - •  

For n o = I we obtain the diffusion problem in a cylindrical conductor, and for n o = 0 we have 
the one-dimensional planar problem. In the equations above ~ is the thermal conductivity 
coefficient, assumed constant in the present model, and the remaining notations are the com- 
mon ones. 

The magnetic field H(~, t) =H0{ (~0) and the thermal flux q(xa, t) = 0 are given on a 
planar or cylindrical boundary of the conductor, and the diffusion process of the magnetic 
field is investigated for vanishing initial values of H, E, Q, q. 

2. Consider the problem with o = o0. For x 0 = 0 the problem condltions make it possible 
to introduce the self-similar variable z = x/t i/2. In dimensionless variables we obtain the 
following boundary value problem for the system of ordinary differential equations: 

_ _  ~ noE dH = _ E ,  dE _ a H - -  T E 
dz dz z ' 

dq zq dO 
d - - 7 = - - 2 ~ Q - - ' f ~ + E 2 ,  • 1 6 3  (2 .1)  

H(o) = t ,  q(~ = o, H ( ~ ) =  Q(~)  = O. 

The first two equations of system (2.1) are solved independently of the remaining ones. 
inating E and putting r = z2/4, we have for H 

P u t t i n g  H ( ~ ) =  feP V t p ) d p ,  from (2 .2)  we f i n d  t h a t  V ( p ) ~ ( p  + l)~+(n0-1)/2 p-1-% 
c 

solutions of Eq. (2.2) are obtained in the form 

Elim- 

( 2 . 2 )  

The two independent  
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Hi ~ ,f e;v (t + p) a+(n~ p-l-o~ dp, 
C 1 

H'2 ~ t" e~v(l + p)~Z+(%-l)#p-l-=dp. 

The contour C i starts from -~, bypasses the point -i in the positive direction, and is removed 
to -~. The contour C2 is constructed similarly, except that along with the point -I it also 
bypasses the point 0. Taking into account the condition H(z0) = 1 [in system (2.1) z 0 = 0], 
as well as the asymptotic H~(~) for ~ ~ ~ [~ = (n o - i)/2] 

;a "~, (~ + I~- t) .  (~z + l ~ -  k) ~ - ~  
H~ (~) ,--, r (~ + o~-------q + - -  k! r (i + ~z - k) ' 

h = i  

the electromagnetic field is found in the form 

2 z2y ~]l~ ZoY 

H(z) =~e  -f (g-- t)~+(%-~)#!/-~-r e ~ (y--l)'z+(%-~)/~g-l-~dg, 
1 1 

z2y ]~ z2y 
z y "~ j)cc+(no--1)/2g_o~clff/y j ) c t + ( n o _ l ) / 2 y _ l _ a  dg" E (z) = T e (y - -  e-  T (y _ 

1 ;1  " 

( 2 . 3 )  

It follows from Eqs. (2.3) that E(0) = r(l + a)/F(i/2 + a). Transforming to the original vari- 
ables of system (i.i), we obtain the current density j at the conductor boundary (x = 0): 

./(0, t) = %t ~-~/~ r (t + ~z) 

The l a s t  e q u a t i o n  shows t h a t  t h e  c u r r e n t  d e n s i t y  d i s c o n t i n u i t y  v a n i s h e s  f o r  ~ ~ t / 2 .  In  t h e  
n o n l i n e a r  p rob lem ( s e e  h y p o t h e s e s  2 and 3) t h e  c u r r e n t  d e n s i t y  d i s c o n t i n u i t y  a t  t ~ 0 i s  con-  
t r o l l e d  n o t  o n l y  by t h e  bounda ry  r e g i m e ,  b u t  a l s o  by t h e  t h e r m a l  c o n d u c t i v i t y  c o e f f i c i e n t .  
For  h y p o t h e s i s  3 , i t  § 0 o * e0,  and t h e  b e h a v i o r  o f  t h e  c u r r e n t  d e n s i t y  i s  t h e  same as  in  t h e  
l i n e a r  p rob lem [ s e e  ( 4 . 2 ) ] .  For  o = 1/AQ~ t h e  s t r u c t u r e  o f  t h e  s o l u t i o n  d i f f e r s  s h a r p l y  f rom 
h y p o t h e s e s  1, 2 (as  shown b e l o w ) ,  b u t  h e r e  t h e  p ro b l em  o f  t h e  b e h a v i o r  o f  j ( 0 ,  t )  as  a f u n c -  
t i o n  o f  • i s  n o t  t o u c h e d  upon.  The l a s t  two e q u a t i o n s  o f  sys t em ( 2 . 1 )  r e d u c e  t o  

xQ"+-Uz O , _ 2 a O = _ E  2(z)=-] T "  

Following the replacement ~ : z2/4x we find 

~Qt~ + (~ + i/2)Q: - 2~Q = - f ( x  0.  ( 2 . 4 )  

The solution of the corresponding homogeneous equation is selected in the form 

where 
Q =CiQi-{--C2Q~, 

Q1 (~) = ~ y e;p (i + p)2~z-i/~p-i-2a dp; 
C 

Q2 (~) = J e-~u (y -- 1)2a-1/2 y-i-2~ dg. 
1 

The contour C is a neighborhood with center at the point p = 0 and a radius of unity. 
easily obtains asymptotic equations for Qi(C) and Q2(~) for ~ + co; 

~ ~ ,  (2~ -- t/2) . . .  (2a + t/2 -- k) ~a-k 
QI(~) -- r ( l +  2~) + - -  k! r (t + 2a--  k) + 0 (~2~-n'~), 

h = l  

e-~ ( P 
Q' (~) -- ~ + i / 2  F (20~ -~- t/2) -~- X (--  j)n n (t + 2a) ...  (n + 2ct) r(2~ + 1/2 + n) + 0 (~-v-1)). 

For ~ + 0 we have convergent series for Qi and Qz 
co 

Q l ~ t q - ~  ( - - t )  n ( n - t - 2 a ) ' ' ' ( l - 2 a ) ( - 2 ~ )  
n=x n! (n -- I/2) ... (3/2) (1/2) ~n 

One 

(2.5) 
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Q 2 " ~ ] / r ~ ( t - ~  ( - t ) n  (n-2cz- t /2)~  ) 
n = l  n! (n -4- t /2 )  . . .  3 /2  ~rt _j_ 

A- 2 ---Y- (1 + cos q$ 4 cos q~ dq~ t -J- ( - -  - ,  n! (n--  t/2) . . .  (3/2) (t/2) ~n . 
0 n~l  

C o n s i d e r  i n i t i a l l y  p l a n a r  g e o m e t r y .  I n  t h i s  c a s e  n o = 0 i n  E q s .  ( 2 . 3 ) .  The  g e n e r a l  s o l u t i o n  
of Eq. (2.4) can be written in the form 

J" I Q1 (~) f(x~) , , Q = CaQ~ -t- C2Q2 q- Qr q~ (~) / (• d~ -- Q2 d~, W (~) = Q~Q2 - Q2Q~. ~w (b . ~w (~) 
0 0 

The constants C I and C 2 are determined from the boundary conditions v/~Q~ ~ 0 (~ § 0), Q(~) = 
0. Taking this into account, we finally obtain 

Q = - Q1 (~)J -  ~ -~ f f  d~ - -  Q2 (~) .j ~w (~) d~ 
o 

E q u a t i o n  ( 2 . 6 )  i s  c o n v e n i e n t  f o r  f u r t h e r  s t u d y .  P u t t i n g  u - ~ O  and  t a k i n g  i n t o  a c c o u n t  t h e  
a s y m p t o t e  ( 2 . 5 ) ,  we f i n d  t h e  e x p a n s i o n  i n  u .  I n  p a r t i c u l a r ,  f o r  • = 0 ( t h e  z e r o t h  a p p r o x i m a -  
t i o n )  we h a v e  ?,(4) { o=0 

Q (z) = 2z4~ 
VgT~-7~' : >  o. 

We now consider cylindrical geometry (n o = i). To conserve the self-similarity of the problem 
we assume, as was done in [i, 5], that the cylindrical boundary of the conductor undergoes a 
phase transition, in which the surface of the conductor evaporates. In this case the boundary 
regime must be given in the form of a step function (~ = 0). The general solution of Eq. 
(2.3) is represented in the form 

f; Q~ (~) f Q1 (D f 

;o ~o 

The following requirements are generated for ~ = ~0: 

dQ ;=~o d--~ - - 0 ,  Q ( ; o ) = Q *  

(Q* is the amount of heat required to heat a unit volume of the conductor from the initial 
temperature to the boiling temperature and for its total evaporation). These conditions 
made it possible to determine ~0(z0) from the relation 

co 

w (;o) [ Q~ (D ~ (• d~. ( 2 . 7 )  
Q* - Q' 3 ~w(b 

(~o) ~0 

Since ~ = 0, expression (2.7) undergoes further simplification. Indeed, in this case 
Q1 = i, W($) = Q~($), and, taking into account the asymptote (2.5), we find that for ~ + 
Q2(~)/W(r § If ~0 § ~ in relation (2.7), there exists a limit to its right-hand side: 

lira ;t(_~_~)d~_ t 
~0.~oo ~ ~ 2 

~o 

To obtain this result we used Eqs. (2.3) and took into account that f(z2/4) = E2(z, z0). 
Consequently, the maximum magnetic field which can be supported by the cylindrical surface 
can be determined from the relation connecting the dimensional and dimensionless Q*, i.e., 

Qaim = ~H~Q* : 
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H0ma x =/-y2_Q*. (2 .8 )  

3. We investigate the nonlinear problem with the dependence o = I/AQ$, 8 = const > 0, 
neglecting the thermal conductivity, For x 0 = 0 the conditions of the problem make it pos- 
sible to introduce the self-similar variable z = xt-(~+2~$ )/=. We obtain a system of ordi- 
nary differential equations 

dH __ E Q - ~ ,  dE - -  osH -~ i --I- 2r 6 zEQ- f~  noE 
dz dz 2 z ' 

dQ 
--  i a ~ ( 2 a Q -  E 2 Q - g ) ,  H (O) = t ,  

in  which we r e p l a c e  v a r i a b l e s  a c c o r d i n g  t o  t h e  e q u a t i o n s  

2[~Zo ( 2~?z~ ) ( 1 - ~ ) / ~ ' / ~ h  (~), 
z 0 

: V-~ (2~?z=o)O+g)/2g~hge(~) , E 

Q = ( 2 ~ Y ~ ) ' ~ ' ~ q ( ~ ) ,  v - ~+~=~ 2 
Following some calculations, we have equations for the functions h, e, q: 

~ e~ - 28 - -  1 ,  

d~ i - t ~  (~ t  2-~-) ~t~, 
~d--~-- 2~ ~ -~ -  I ~ e-l- T 

dq i i e 2 q 2~z 

~ - ~  = l _--~ T q-f - -6-  - T i _ ~ q. 

At ~ : 0 we seek a holomorphic solution of system (3.1). The initial conditions are taken 
to be 

h(0) ~ t, e(0) = t, q(0) = i. 

Thus, we put h = i + h, e = 1 + ~, ~ + i = 
= 0 and acquire vanishing values. These 

tions 

(3.1) 

q, where the functions h, ~, ~ are holomorphic at 
functions are determined from the system of equa- 

~d~dt, l+e~ ~ ( - - t )n  6(6-Fi) ' " (6~-n-- i )nl  "~n ~_7--/'/26 
" n = l  

213 + T  ~ 

oo 

I I rtO 

J~ (I+7) 2~ ~(6+i)...(~+n-i)~. § 2= l !~(  l ~--- 6d-~) (-1)n " n~ - 6d-~) ~ - +~). 
n=O 

We substitute integral series for h, ~, ~, i,e., we put 

h =  hn~ n, e =  e~", q :  qn{ n. 
n~l 71=I ~=l 

The following system of linear equations is obtained for finding the coefficients 

(--t)n~q~ --; e~ -- (1 ~- 2n~)hn  = O, 

(t + 2n[~)e,~ - -  (t -~ 2 n ~ ) h ,  : . . . .  

(l ~- ~n)q~ - -  e n - -  (1 / -  2 n ~ ) h n  . . . .  

( t h e  d o t t e d  l i n e s  d e n o t e  known q u a n t i t i e s ,  o r  q u a n t i t i e s  d e t e r m i n e d  a t  p r e c e d i n g  s t e p s ) .  The 
d e t e r m i n a n t  o f  t h i s  s y s t e m  i s  n o n v a n i s h i n g  f o r  6 > 0. The c o n v e r g e n c e  of  t h e  s e r i e s  o b t a i n e d  
i s  d e t e r m i n e d  by t h e  method o f  u p p e r  bound f u n c t i o n s .  The p rob lem a r i s e s  o f  t h e  r a d i u s  of  
convergence of these series. If it is less than unity, we continue analytically the solution 
constructed along the real ~ axis to the point ~ = I. Analysis of system (3.1) shows that 
such a continuation is indeed possible. It follows from (3.1) that ~(~) + ~ for ~ § I. Con- 
sider a system of two equations in z 0, ~0: 
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f-g-, 

V ~  2~Zo (2~?z~) (~-~)/2~ ~ /~h  (~o) = 1, 

(2~?z~)'/~ ~/~q (~o) = Q*. 

This system can always be solved for n o = 0, I. As a result of solving it for ~ = 0 we 
obtain two curves: x I = z0(l - r x 2 = z0/~. The first describes the evaporation front 
of the surface of the conductor, and the second - the propagation front of the boundary re- 
gime. As is well known, in the linear problem with x = 0 the boundary regime propagates 
with an infinite velocity. An infinite front velocity also occurs in the case of hypothesis 
3. A dependence of the electric conductivity by the equation o = I/AQB models a vanishing 
resistance for t § 0, i.e., the presence of a superconducting phase at the initial moment of 
time. The analysis provided in Sec. 3 shows that in the given model one observes a finite 
propagation velocity of electromagnetic perturbations. For nonlinear parabolic problems such 
solutions with a finite propagation velocity of perturbations were first noted in [6]. 

4. Let o = o0/(i + ~Q). For ~ = 0 one can introduce the self-similar variable z = 
xt -I/2. The system of ordinary differential equations is in this case 

dE z E hoe dH E 

d-~ = 2 I + ~ Q  z ' d -~:  i + ~ Q '  (4.1) 

E ~ • dq z dQ _ 

d~ 2 q + ~ + ~ o '  d~ q, H ( O ) = t ,  q ( O ) = O .  

We represent the required solution of (4.1) in the form of integral series in the parameter 

H = Z ~ v ~ ,  E =  E~?, . . .  
~ 0  ~ = 0  

In the zeroth approximation we have 

' ~ Z n o ~  0 
H o ~ - - E o ,  E o -  ~ Eo , 

z (4.2) 
t Z 2 

•  Q o = - - q o ,  Ho ( O) = t ,  qo(O)=O. 

These equations coincide with (2.1) for ~ = O. The subsequent approximations are determined 
from the inhomogeneous system of ordinary differential equations: 

= - -  E• - -  Q p - l H n - p ,  

En  g En - -  --z E ~ - -  ~ Q ; - 1  E'~_p + - z -  E n _  , 
p=a ( 4 . 3 )  

, z , z ~ EpEn_p,  
• = - -  - U  q~ - -  Op-~ • + --U q~-v + x.~ 

P = I  P=O 

Q~ = - +~, ~qn (o) = o ,  qn (o) = o ,  n = t ,  2,  3 . . . .  

For n o = 0 the problem (4.3) can be solved for each n. The convergence of the series ob- 
tained is established by the method of upper bound functions. For n o = i it is necessary 
to treat the phase transition problem, as was done in Secs. 2, 3. 

It is of large practical value to find the values of the maximum magnetic field which 
can be supported by the conductor under consideration. This field was found in Sec. 2 for 

= const. This method is not valid in the nonlinear problem due to nonavailability of exact 
expressions for the solutions. Let problem (4.1) be solved for H(z 0) = i, q(z 0) = 0, H(~) = 
Q(~) = 0. The z 0 value is determined by the supplementary condition 

q (z, Zo)t~=: ~ - -  Q *  

A connection was indicated in Sec. 2 between the dimensional Q~im and the dimensionless Q*: 

* 2 Q ,  Qai~/~Ho = = Q (~o, zo) =-- ~ (~o). 
It is clear that the field is maximum when z 0 § co. Consequently, the problem reduces to 
finding the limiting values of ~(z0)when z 0 § ~. The maximum field H 0 max is then expressed 
by the equation 
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]/ q:d  
Horaax = ~ li--~-(Zo)" 

ZO--) oo 

We put in (4.1) (z- Zo)/Z o = ~, q z zoq ' E----zoE, a=z~ 2. Following the replacements indicated, 
we obtain the singular perturbation boundary value problem 

' ~ dQ q ( 4 . 4 )  
8 - -  2x q - ~ I - j - ~ J Q '  8 d~ z '  

H(O) = t ,  H(oo) = Q(oo) -- O, q(O) -- 0. 

We introduce the stretching variable q = ~/s [7] and consider (4.4) for 0 ~< ~I <~ ~10 < oo, e-+ 0. 
Retaining only the main terms, we find 

d~  ~ dT~ i 7~ 
dq I -~- ~Q' dq 2 t -1- ~Q' (4.5) 

d7 7 ~ 
dq -- N "~I+I3Q'  x ~ - - ~ = - - ~  

The system (4.5) has two first integrals: 

1 ~ ~z ~ C~. • q - y Q =  +C1 ,  T = 

At q § ~ the solution of system (4.5) must be matched with the solution of system (4.4) [7], 
which is exponentially small for s § 0, ~ > 0. This matching is possible only under the 
conditions C l = C 2 = 0. Putting then q = 0 and taking into account that dQ/dq = 0, for n = 0 
we finally find 

l im q~(z0)----- Q ( O ) -  1 
ZO ---~oo 2 ~ 

The value of the maximum magnetic field which can be supported by the conductor has the same 
value as in the linear problem [see (2.8)]: 

r �9 
H0ma x ~ ~/ 2Qdim (4.6) 

Equation (4.6) has a simple physical meaning: a conductor breakdown occurs if the magnetic 
energy density becomes equal to the coupling energy of the components of the conductor par- 
ticles. Equation (4.6) for the linear problem (2.1) (o = o 0 =const) was obtained in many 
studies [i, 5, 8, 9]. 

it 

2. 

3. 
4. 

5. 

6. 

. 

8. 

. 

LITERATURE CITED 

V. V. Semchenko and A. V. Stepanov, "Diffusion of pulse superstrong fields," Prikl. Mekh. 
Tekh. Fiz., No. 1 (1969). 
S. M. Ponomarev, "Exact solutions of the equations of nonlinear diffusion of a magnetic 
fields," ZhVMMF, 28, No. i0 (1988). 
G. Knopfel, Superstrong Pulse Magnetic Fields [Russian translation], Mir, Moscow (1972). 
V. V. Prut, "Self-similar solution of the equations of nonlinear diffusion of a magnetic 
field," Prikl, Mekh. Tekh. Fiz., No. 1 (1982). 
S. M. Ponomarev, "Penetration of strong pulse magnetic fields into a conductor," Prikl. 
Mekh. Tekh. Fiz., No. 5 (1989). 
Ya. B. Zel'dovich and A. S. Kompaneets, "Theory of heat propagation for a temperature- 
dependent thermal conductivity," in: Dedication to 70th Birthday of Acad. A. F. loffe, 
Nauka, Moscow (1950). 
J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell, Waltham, MA (1968). 
G. K. Shneerson, "Theory of electrical rupture of a skin-layer in a superstrong magnetic 
field," Zh. Tekh. Fiz., No. 2 (1973). 
E. I. Bichenkov and A. E. Voitenko, "Self-similar electrical rupture in a conductor," 
Prikl. Mekh. Tekh. Fiz., No. 3 (1969). 

486 


